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Abstract. Blockchain technology and, in particular, blockchain-based
transaction offers us information that has never been seen before in the
financial world. In contrast to fiat currencies, transactions through vir-
tual currencies like Bitcoin are completely public. And these transac-
tions of cryptocurrencies are permanently recorded on Blockchain and
are available at any time. Therefore, this allows us to build transaction
networks (TN) to analyze illegal phenomenons such as phishing scams
in blockchain from a network perspective. In this paper, we propose
a Transaction SubGraph Network (TSGN) based classification model
to identify phishing accounts in Ethereum. Firstly we extract transac-
tion subgraphs for each address and then expand these subgraphs into
corresponding TSGNs based on the different mapping mechanisms. We
find that TSGNs can provide more potential information to benefit the
identification of phishing accounts. Moreover, Directed-TSGNs, by intro-
ducing direction attributes, can retain the transaction flow information
that captures the significant topological pattern of phishing scams. By
comparing with the TSGN, Directed-TSGN indeed has much lower time
complexity, benefiting the graph representation learning. Experimental
results demonstrate that, combined with network representation algo-
rithms, the TSGN model can capture more features to enhance the clas-
sification algorithm and improve phishing nodes’ identification accuracy
in the Ethereum networks.

Keywords: Ethereum · Phishing identification · Subgraph network ·
Network representation · Graph classification

1 Introduction

Blockchain is a distributed public ledger that is secured by blockchain technol-
ogy. All transactions take place between two different public addresses and are
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permanently recorded on a specific blockchain built for Bitcoin. The process of
securing these transactions is handled by Bitcoin miners, who use their comput-
ing power to solve complex encryption problems and validate blocks and trans-
actions in the process [13]. There is no limit to the number of Bitcoin addresses
that any individual or organization can create, and there is no need to verify the
identity during the process of creating an address. With the above advantages,
blockchain technology has been rapidly developed and naturally introduced into
the financial field. In the digital currency scenarios, the most widely used appli-
cation of blockchain is cryptocurrency technology [21], by which accounts can
freely and conveniently conduct transactions with currency and information and
do not have to rely on traditional third parties.

It’s worth noting that the cryptocurrency market inevitably breeds many
cybercrimes due to anonymity and unsupervised organization. Similarly, as the
second-largest cryptocurrency platform next to Bitcoin, Ethereum has been
affected by many entities/accounts engaging in illegal activities over the network,
including smart Ponzi schemes, phishing, money laundering, fraud, and criminal-
related activities. It is reported that phishing scams can break out periodically
and are the most deceptive form of fraud [4]. Although the hash mechanism set
up inside the blockchain can prevent transactions from being tampered with,
so far, there are no available internal tools that can detect illegal accounts and
suspicious transactions on the network. Thus it can be seen that cybercrimes,
especially phishing scams, have become a critical issue on Ethereum and should
be worthy of long-term attention and research to adopt effective countermea-
sures.

Generally, phishing is a social engineering attack that aims to exploit weak-
nesses caused by users in the system processes [9]. In traditional phishing attacks,
the terminal consumers will receive emails or text messages containing a mali-
cious website whose hostname is close to the legitimate domain from a trusted
entity in disguise. Once the link is clicked, phishers will use the measures pro-
vided in the link to obtain the users sensitive information, such as usernames,
passwords, and credit card details. Thus, existing researches on detecting phish-
ing scams mainly focus on the suspected phishing website identification [5,16]
and phishing text massages detection [1,7]. Compared with traditional phishing
scenarios, blockchain’s openness and transparency make the suspicious phishing
addresses and fraudulent funds reportable and traceable. Therefore, traditional
forms of phishing scams are difficult to implement on the Ethereum platform
on a large scale, and the corresponding detection schemes are not suitable to
migrate to the Ethereum phishing detection problem.

In order to identify phishing addresses on Ethereum, we construct transaction
networks by transaction information recorded permanently on the Ethereum.
Each account is accessible and their transaction history can be available freely.
In the transaction networks, the nodes represent Ethereum addresses, while the
edges indicate the transaction records with some attributes. Generally, each
record between Ethereum accounts includes information such as transaction
direction, transaction amount, and transaction timestamp. In this paper, we
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propose the TSGN model to identify phishing accounts. We think of transaction
direction and transaction amount as the essential attributes to build transaction
networks. Based on the above, we preproccess the weighted directed transaction
networks and then map these networks to subgraph network structural space.
According to different pre-processing and mapping strategies, we can obtain the
corresponding TSGN and Directed-TSGN for the subsequent feature extraction
and detection task. Specifically, our contributions can be concluded as follow:

– We propose a new transaction network model, transaction subgraph net-
works (TSGNs). Compared with original transaction networks, our TSGN
can increase the diversity of features benefiting the subsequent network algo-
rithms.

– We introduce different network mapping strategies to fully capture the poten-
tial structural topological information which can not be obtained easily from
transaction networks.

– We build the problem of Ethereum phishing account identification as a graph
classification task. Our TSGN model can be utilized to enhance various graph
classification algorithms such as manual attributes, Graph2Vec, and Diffpool.

– We apply the new model to three transaction network datasets, and our
experimental results demonstrate the effectiveness of TSGNs. The fusion of
TN and TSGNs generated by different mapping strategies can increase the
performance of graph classification algorithms. Directed-TSGN achieves the
best performance in 7 of 9 cases. Especially, the classification result Directed-
TSGN increases to 93.90% (93.25% for TSGN) when only Diffpool is con-
sidered, greatly improving the phishing account identification performance.
More remarkably, compared with TSGN, generating Directed-TSGN needs
much less time, reduced by almost one order of magnitude.

The rest of the paper is structured as follows. In Sect. 2, we make a brief
description of the phishing identification and graph representation methods. In
Sect. 3, we mainly introduce the definitions and construction methods of trans-
action subgraph networks. In Sect. 4, we give several feature extraction methods,
which together with TSGN and Directed-TSGN are applied to three Ethereum
transaction network datasets. Finally, we conclude our paper in Sect. 5.

2 Background and Related Work

In this section, to supply some necessary background information, we give a brief
overview of phishing detection and graph representation algorithms in graph
mining.

2.1 Phishing Identification

Phishing scams have become a major threat to the security of Ethereum trans-
actions. To create a good investment environment in the Ethereum ecosystem,
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many researchers have paid lots of attention to study the effective detection
methods for phishing scams. Different from the privacy of traditional finan-
cial transaction information, the transaction records of the blockchain are freely
available and contain rich attributes. Therefore, many recent studies are mainly
based on transaction records. Wu et al. [18] proposed an approach to detect
phishing scams on Ethereum by mining its transaction records. By considering
the transaction amount and timestamp, this work introduced a novel network
embedding algorithm called trans2vec to extract the features of the addresses for
subsequent phishing identification. Chen et al. [4] proposed a detecting method
based on Graph Convolutional Network and autoencoder to precisely distinguish
phishing accounts. One can see that these methods mentioned above mainly built
phishing account detection as a node classification task, which can not capture
more potential global structural features for phishing accounts. Yuan et al. [22]
built phishing identification problem as the graph classification task, which used
line graph to enhance the Graph2Vec method and achieved good performance.
However, Yuan et al. only consider the structural features obtained from line
graphs, ignoring the direction information, which plays a significant role in phish-
ing scams’ identification problem. As we know, in the process of phishing fraud,
the phishing funds mostly flow from multiple accounts to a specific account.
From the network’s perspective, the phishing nodes’ local topology may be more
inclined to multiple inputs and a single output. Our method takes the direction
information into consideration and builds the Directed-TSGN model, revealing
the topological pattern of phishing scams.

2.2 Graph Representation

Network, as a general modeling approach, are frequently used to study various
real world systems, such as social networks [19], traffic networks [15], protein
interaction networks [3], literature citation networks [8], etc. Due to its unique
structure characteristics, Blockchain ecosystem is naturally modeled as transac-
tion networks to carry out related research. Simultaneously, many graph repre-
sentation methods are applied to capture the dependency relationships between
objects in the Blockchain network structure. Alarab et al. [2] adopted Graph
Convolutional Networks (GCN) intertwined with linear layers to predict illicit
transactions in the Bitcoin transaction graph and this method outperforms graph
convolutional methods used in the original paper of the same data. Liu et al. [12]
introduced an identify inference approach based on big graph analytics and learn-
ing, aiming to infer the identity of Blockchain addresses using the graph learning
technique based on Graph Convolutional Networks. Zhang et al. [23] constructed
a graph to represent both syntactic and semantic structures of an Ethereum
smart contract function and introduced the graph neural network for smart con-
tract vulnerability detection. According to the above works, one can find that
graph representation methods can indeed be utilized to study blockchain net-
works and outperform in many different applications. In this work, we introduce
three categories of graph representation methods such as handcrafted features
[19], embedding method Graph2Vec [14], and deep learning method Diffpool [20],
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to extract the features of TNs, TSGNs, and Directed-TSGNs, preparing for the
subsequent phishing account identification.

3 Methodology

In this section, we first formulate the problem description and then present the
construction detail of the transaction subgraph network model.

3.1 Problem Description

Generally, given a set of addresses on Ethereum, we can construct transaction
network G = (V,E,W ), where the node set V indicates the set of addresses,
the edge set E represents the transaction from a source address to a destination
address with the transaction amounts as the weight value set W .

Here, we construct a set of transaction graphs for each target address G =
{Gadd.1, Gadd.2, · · · , Gadd.n}, where Gadd.i = (Vadd.i, Eadd.i,Wadd.i,Dadd.i, yadd.i)
is a transaction graph of target address i, Vadd.i represents address i and it’s
neighbor addresses, Eadd.i is the directed transaction set between the addresses
of Vadd.i with direction set Dadd.i and weight set Wadd.i, and yadd.i ∈ Y |G|×|φ|

is the label of address i and it’s corresponding transaction subgraph, where φ
is the label set of all target addresses. In this work. our purpose is to learn a
mapping function F : G → Y which can predict the labels of graphs in G. The
label set Y includes phishing addresses and normal addresses in the scenario of
Ethereum phishing account identification.

3.2 Transaction Subgraph Networks

In this section, we introduce the detail of our transaction subgraph network
model. Firstly, we give the definitions of TSGN and Directed-TSGNs as shown
in the Definition 1 and Definition 2, and then we elaborate the construction
methods of transaction subgraph networks (TSGNs) and directed transaction
subgraph networks (Directed-TSGNs), respectively.

Definition 1 (TSGN). Given a transaction graph G = (V,E,W ), the TSGN,
indicated by T = L (G), is a mapping from G to T = (V ′, E′,W ′), with the node
and edge sets indicated by V ′ = {ti|i = 0, 1, 2, · · · } and E′ ⊆ (V ′ × V ′). There
will generate an edge between the transaction subgraphs ta and tb if they share
the same addresses or transactions in the original transaction graph G. The W ′

will be calculated by a weight mapping function W ′ ← f(W ).

Definition 2 (Directed-TSGN). Given a directed transaction graph G =
(V,E,W,D), the Directed-TSGN, denoted by TD = F (G), is a mapping from
G to TD = (V ∗, E∗,W ∗,D∗), with the node and edge sets denoted by V ∗ =
{di|i = 0, 1, 2, · · · } and E∗ ⊆ (V ∗ × V ∗). A directed edge will be built between
two directed transaction subgraphs da and db when they meet the following con-
ditions: In the original directed transaction graph G, (i) they share the common
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addresses or transactions, (ii) and form a path with the same direction. The W ∗

will be calculated by a weight mapping function W ∗ ← f ′(W ).

According to the above definitions, we can see that TSGN is a variant of SGN
model [19] on Ethereum transaction networks. Different from SGN model, TSGN
adds a network weight mapping mechanism, which can retain the transaction
amount information in the original transaction network for downstream network
analysis tasks. Based on TSGN model, Directed-TSGN introduces the direction
information into the mapping mechanism which can capture the path of trans-
action behavior. Next, we will focus on demonstrating the specific construction
methods.

3.3 Constructing TSGN

Fig. 1. A toy example of constructing TSGN.

Figure 1 shows the process of constructing TSGN. Given an original transaction
network composed of a center address and it’s neighbor addresses, we can firstly
get a plain transaction network with weight values after undirected processing.
And then, we map this network into TSGN structural space. Specifically, the
edges in the undirected transaction network is mapping to the nodes W1, W2,
W3, W4, W5 of TSGN, and then new edges are built between nodes W1, W2,
W3, W4, W5 because the edges of undirected transaction network share the
common (red) node. We choose the mean function f(Wij) = Mean(Wi,Wj) as
weight mapping function in Definition 1, i.e., the weight of edge (W1,W2) can
be calculated as (W1+W2)/2. Of course, different weight mapping functions can
be defined as required.

3.4 Constructing Directed-TSGN

According to the Sect. 3.3, we can find that the TSGN becomes more complex
than the original transaction network, even a fully connected network, which may
reduce graph mining algorithms’ representation ability. Moreover, the mapping
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Fig. 2. A toy example of constructing Directed-TSGN.

mechanism of TSGN model can not retain the direction information, which may
play an important role in the following tasks.

In response to the above problems, we propose the Directed-TSGN. As shown
in Fig. 2, the directed transaction network remains the direction and weighted
attributes of the original transaction network. Similarly, the edges are mapped
into the black nodes W1, W2, W3, W4, W5 of the Directed-TSGN. The two red
directed dashed lines indicate that the transactions W1 and W2 and transactions
W3 and W4 can be seen as two continuous transaction behaviors, respectively.
In other words, the edges with weights W1 and W2 and the edges W3 and W4

can form two paths with the same direction, respectively. According to the four
direction mapping strategies, we can build the new edges in the Directed-TSGN.
Due to the fact that 2© and 4© don’t satisfy the requirements of constructing
edges, the Directed-TSGN can limit the network size and get a relatively sparse
transaction subgraph network. Here, f ′(Wij) = log(Wi + Wj) is chosen as the
weight mapping function in Definition 2.

4 Experimental Evaluations

4.1 Datasets

Ethereum, today’s largest blockchain-based application, has fully open trans-
action data which can be easily accessed through the API of Ether-
scan(etherscan.io). Considering that the entire transaction network is enor-
mous, we crawl some phishing addresses and normal addresses as the target
nodes and only extract their first-order neighbor nodes from the Ethereum trans-
action records to construct transaction network datasets. After filtering and pre-
processing the raw data, we finally got 1626 transaction networks centered on
phishing nodes, and 1641 transaction networks centered on normal nodes. And
then, these networks will be randomly divided so that we finally get three bal-
anced datasets, each of which has 500 transaction networks of phishing addresses
and 500 transaction networks of normal addresses. And the next experiments will
be verified on these three datasets. The basic statistics of the three datasets are
shown in Table 1.
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Table 1. Statistics for the three datasets. NG is the number of graphs, #Cmax is
the number of graphs belonging to the largest class, NC is the number of classes, and
#Nodes and #Edges are the average numbers of nodes and edges, respectively, of the
graphs in the dataset.

Dataset NG #Cmax NC #Nodes #Edges

EthereumG1 1000 500 2 26.003 25.031

EthereumG2 1000 500 2 31.650 30.673

EthereumG3 1000 500 2 26.338 25.369

4.2 Metrics

In order to accurately evaluate the quality of each classification model, in this
paper, we will use F1-Score as a metric,

F1 =
2PR

P + R
, (1)

where P is precision and R is recall. F1-Score is the harmonic mean of preci-
sion and recall, so it can more comprehensively judge the pros and cons of the
classification models.

4.3 Baselines and Experimental Setup

For the phishing account detection problem, we transform it into a graph clas-
sification task. In order to better verify the effect of the model proposed, we
adopt three typical feature extraction methods to generate graph representation,
namely handcrafted attributes, Graph2Vec, and Diffpool, which are introduced
in the following.

Handcrafted Attributes. Many classic topological attributes can be utilized
to analyze some important patterns in a complex network and can capture some
basic information for graph classification [11,17,19], link prediction [6] and so on.
In this paper, we aim to represent the networks by manually extracting the trans-
action network features, which are used in the downstream graph classification
task. We mainly extracted 10 network features such as the number of network
nodes, the number of network edges and the average clustering coefficient, etc.
See the Appendix for details.

Graph2Vec. Graph2Vec [14] is the first embedding framework for the entire
networks, which is relied on the embedding technique that has achieved impres-
sive performances in NLP. Graph2Vec extracts some rooted subgraphs around
different nodes and analogies them to Doc2Vec’s context words and thus learns
the graph representation [10]. Graph2Vec can learn the distributed representa-
tions of arbitrary sized graphs such that it can ignore the problem such as poor
generalization.
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Diffpool. This method [20] proposed a differentiable graph pool module, which
can generate hierarchical representations of graphs and can be combined with
various graph neural network architectures in an end-to-end manner. Diffpool
learns the distinguishable soft cluster allocation of nodes on each layer of deep
GNN and maps the nodes to a set of clusters, which then form the coarse input of
the next GNN layer. This method mainly solves the problem that the traditional
GNN methods are flat and can’t learn the hierarchical representations of graphs.

Parameter Setting. The experimental part is mainly divided into two steps:
the representation of the graph and the graph feature classification. In the graph
feature representation part, we used the above three graph representation meth-
ods to extract features of TN, TSGN, and Directed-TSGN. For Handcrafted
Attributes, there are no hyperparameters, just extract 10 features of each graph.
For Graph2Vec, the parameter height of the WL kernel is set to 3. The embedding
dimension is set to a commonly-used value of 1,024. For TN and Directed-TSGN,
the parameters weight and direction are set to true. But for TSGN, we set the
direction to false and the weight to true. We set the other parameters as: the
learning rate is 0.025 and the epoch is 1000. For Diffpool, the parameter settings
of the model are the same as in [20]. We also set corresponding initialization
features for different networks. For TN, the node feature is a two-dimensional
vector composed of in-degree and out-degree, while for TSGN and Directed-
TSGN, the node feature is a one-dimensional vector composed of the weight of
the corresponding link before graph mapping. In the graph feature classifier part,
each dataset is randomly split into 9 folds for training and 1 fold for testing. To
exclude the random effect of fold assignment, the experiment is repeated 500
times using the random forest classifier and then records the average F1-Score
and its standard deviation.

4.4 Results

According to the above setting, we conduct some experiments on the three
Ethereum datasets, and the results of phishing account identification are shown
in Table 2. We can find that, compared with the transaction networks (original),
TSGN and Directed-TSGN models indeed has good performances in enhancing
the phishing account identification. Interestingly, TSGN achieves the best clas-
sification performance 94.35% and 93.64%, in 2 of 9 cases based on the deep
learning method Diffpool. Overall, Directed-TSGN increases the performance of
the original classification results in 7 of 9 cases. Combined with the Handcrafted
Attributes method, Directed-TSGN outperforms TN, leading to an increase of
1.11%. Directed-TSGN has an improvement over TN on all datasets, and it leads
to an increase of 11.70% when considering the Graph2Vec method. We can see
that TSGN and Directed-TSGN achieve the state-of-the-art results on the deep
learning method Diffpool, which indicates that our TSGN model can further
improve the representation capability of the deep learning method.
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Table 2. The classification performance of different transaction subgraph network
model.

Datasets EthereumG1 EthereumG2 EthereumG3

Algorithm Handcrafted

TN(Original) 74.74±3.42 76.90±2.65 72.84±2.92

TSGN 75.25±1.63 76.94±2.29 73.04±2.43

Directed-TSGN 75.35±3.88 77.50±2.25 73.95±2.31

Algorithm Graph2Vec

TN(Original) 56.45±4.18 57.25±1.79 61.80±2.23

TSGN 56.95±2.42 57.85±2.72 62.05±3.02

Directed-TSGN 68.15±2.26 68.10±1.28 64.15±2.48

Algorithm Diffpool

TN(Original) 93.09±1.31 89.10±1.64 92.85±1.09

TSGN 94.35±1.39 93.64±1.32 93.25±1.49

Directed-TSGN 93.35±1.18 89.20±1.53 93.90±2.43

Furthermore, we record the computational times and compare the time con-
sumption of constructing TSGN and Directed-TSGN on three datasets. The
results are presented in Table 3, where one can see that, the computational time of
Directed-TSGN is much less than that of TSGN on each dataset, decreasing from
3 hundred seconds to less than 70 s. Such results suggest that, Directed-TSGN can
further enhance the performance of the algorithm for phishing account identifica-
tion, while also greatly improve the efficiency of the algorithms.

Table 3. Time consumption (sec.) of constructing TSGNs and Directed-TSGNs.

Dataset TSGN Directed-TSGN

EthereumG1 1.355 × 102 7.3687

EthereumG2 3.650 × 102 56.9006

EthereumG3 1.264 × 102 65.3633

5 Conclusion

In this paper, we present a novel transaction subgraph network (TSGN) model
for phishing account identification. By introducing different mapping mecha-
nisms into the transaction networks, we built TSGN and Directed-TSGN mod-
els to enhance the classification algorithms. Compared with the TNs, our TSGN
indeed provide more potential information to benefit the phishing account iden-
tification. Considering the direction attributes, the Directed-TSGNs can retain
the transaction flow information that captures the significant topological pattern
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of phishing scams. By comparing with the TSGN, Directed-TSGN is of a control-
lable scale and indeed have much lower time complexity, benefiting the network
feature extraction methods to learn the network structure with higher efficiency.
Experimental results demonstrate that, combined with network representation
algorithms, the TSGN and Directed-TSGN models can capture more features to
enhance the classification algorithm and improve phishing nodes identification
accuracy in the Ethereum networks. In particular, when deep learning methods
Diffpool is adopted to extract the features of these networks, we can achieve the
state-of-the-art results on all datasets.
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7 Appendix

– Number of Graph Nodes (N): The number of nodes in the graph.
– Number of Graph Edges (E): The number of edges in the graph.
– Average Degree (DA): The mean number of edges connected to a node in

the graph.
– Percentage of leaf nodes (P ): A node is defined as a leaf node if it’s degree

is 1. If there are l leaf nodes in the graph, the percentage of leaf nodes can
be calculated as P = l/N .

– Average Clustering Coefficient (Ccoef): The clustering coefficient is a
classic measure to quantify the edge density of the ego-network. Given a
graph, there are mi neighbors of node vi and they are connected by ei edges.
Then, the average clustering coefficient of the graph can be defined as

Ccoef =
1
N

N∑

i=1

2ei

mi(mi − 1)
. (2)

– Largest Eigenvalue of the Adjacency Matrix (λ): Given a graph G, it
can be represented as an adjacency matrix AN×N . As the isomorphic invari-
ant, we can adopt the largest one λ of eigenvalues of A as the graph feature.

– Network Density (DN): Given a network, the numbers of nodes and edges
are N and E, then the network density can be defined as D = 2E/N(N − 1)

– Average Betweenness Centrality (Cbetw): For each pair of nodes in a
connected network, there exists at least one shortest path between the nodes
such that the number of edges that construct this path is minimized. The
betweenness centrality of a node is a measure of centrality based on the
shortest paths. So, the betweenness centrality of a node is defined as

Cbetw(i) =
∑

m �=i�=n

emn(i)
emn

. (3)
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Cbetw(i) can reflect the importance of node i as a bridge node. Where emn is
the number of shortest paths between vm and vn, and emn(i) is the number
of shortest paths between vm and vn that pass through vi.
Then, the average betweenness centrality of the network can be calculated as

Cbetw =
1
N

N∑

i=1

Cbetw(i) . (4)

– Average Closeness Centrality (Cclose): The closeness centrality is also
a measure of centrality based on the shortest paths, which requires taking
into account the shortest paths from each node to the other nodes. Given
a connected network, the closeness centrality of a node is represented as the
reciprocal of the sum of shortest path length between this node and the others.
The average closeness centrality of the network is defined as

Cclose =
1
N

N∑

i=1

k − 1
∑k

j=1 eij

, (5)

where eij is the shortest path length between nodes vi and vj .
– Average Neighbor Degree (Dneighbor): The neighbor degree of a node is

the average degree of all the neighbors of this node, which can capture the
2-hop information. We can calculate the neighbor degree of the node vi as

Dneighbor(i) =
1
ki

∑

vj∈Ni

kj , (6)

where Ni is the neighbor set of node vi, and ki and kj are the degrees of node
vi and vj ∈ Ωi. For a network, we can get the average neighbor degree

Dneighbor =
1
N

N∑

i=1

Dneighbor(i) (7)

References

1. Adebowale, M.A., Lwin, K.T., Sanchez, E., Hossain, M.A.: Intelligent web-phishing
detection and protection scheme using integrated features of images, frames and
text. Expert Syst. Appl. 115, 300–313 (2019)

2. Alarab, I., Prakoonwit, S., Nacer, M.I.: Competence of graph convolutional net-
works for anti-money laundering in bitcoin blockchain. In: Proceedings of the 2020
5th International Conference on Machine Learning Technologies, pp. 23–27 (2020)

3. Borgwardt, K.M., Ong, C.S., Schönauer, S., Vishwanathan, S., Smola, A.J.,
Kriegel, H.P.: Protein function prediction via graph kernels. Bioinformatics 21,
i47–i56 (2005)



TSGN: Transaction Subgraph Networks 199

4. Chen, L., Peng, J., Liu, Y., Li, J., Xie, F., Zheng, Z.: Phishing scams detection
in Ethereum transaction network. ACM Trans. Internet Technol. (TOIT) 21(1),
1–16 (2020)

5. Feng, F., Zhou, Q., Shen, Z., Yang, X., Han, L., Wang, J.Q.: The application of
a novel neural network in the detection of phishing websites. J. Ambient Intell.
Humanized Comput. 1–15 (2018). https://doi.org/10.1007/s12652-018-0786-3

6. Fu, C., et al.: Link weight prediction using supervised learning methods and its
application to yelp layered network. IEEE Trans. Knowl. Data Eng. 30(8), 1507–
1518 (2018)

7. Gualberto, E.S., De Sousa, R.T., Vieira, T.P.D.B., Da Costa, J.P.C.L., Duque,
C.G.: The answer is in the text: multi-stage methods for phishing detection based
on feature engineering. IEEE Access 8, 223529–223547 (2020)

8. Hosseini, M.R., Maghrebi, M., Akbarnezhad, A., Martek, I., Arashpour, M.: Anal-
ysis of citation networks in building information modeling research. J. Constr. Eng.
Manage. 144(8), 04018064 (2018)

9. Khonji, M., Iraqi, Y., Jones, A.: Phishing detection: a literature survey. IEEE
Commun. Surv. Tutorials 15(4), 2091–2121 (2013)

10. Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In:
International Conference on Machine Learning, pp. 1188–1196 (2014)

11. Li, G., Semerci, M., Yener, B., Zaki, M.J.: Graph classification via topological and
label attributes. In: Proceedings of the 9th International Workshop on Mining and
Learning with Graphs (MLG), vol. 2, San Diego, USA (2011)

12. Liu, X., Tang, Z., Li, P., Guo, S., Fan, X., Zhang, J.: A graph learning based
approach for identity inference in dapp platform blockchain. IEEE Trans. Emerg.
Top. Comput. (2020)

13. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system. Technical Report,
Manubot (2019)

14. Narayanan, A., Chandramohan, M., Chen, L., Liu, Y., Saminathan, S.: sub-
graph2vec: Learning distributed representations of rooted sub-graphs from large
graphs. In: International Workshop on Mining and Learning with Graphs (2016)

15. Ruan, Z., Song, C., Yang, X.H., Shen, G., Liu, Z.: Empirical analysis of urban road
traffic network: a case study in Hangzhou city, china. Phys. Stat. Mech. Appl. 527,
121287 (2019)

16. Sahingoz, O.K., Buber, E., Demir, O., Diri, B.: Machine learning based phishing
detection from URLs. Expert Syst. Appl. 117, 345–357 (2019)

17. Wang, J., et al.: Sampling subgraph network with application to graph classifica-
tion. arXiv preprint arXiv:2102.05272 (2021)

18. Wu, J., et al.: Who are the phishers? phishing scam detection on Ethereum via
network embedding. IEEE Trans. Syst. Man Cybern. Syst. (2020)

19. Xuan, Q., et al.: Subgraph networks with application to structural feature space
expansion. IEEE Trans. Knowl. Data Eng. (2019). https://doi.org/10.1109/TKDE.
2019.2957755

20. Ying, R., You, J., Morris, C., Ren, X., Hamilton, W.L., Leskovec, J.: Hierarchi-
cal graph representation learning with differentiable pooling. In: Proceedings of
the 32nd International Conference on Neural Information Processing Systems, pp.
4805–4815 (2018)



200 J. Wang et al.

21. Yuan, Y., Wang, F.Y.: Blockchain and cryptocurrencies: model, techniques, and
applications. IEEE Trans. Syst. Man Cybern. Syst. 48(9), 1421–1428 (2018)

22. Yuan, Z., Yuan, Q., Wu, J.: Phishing detection on Ethereum via learning represen-
tation of transaction subgraphs. In: Zheng, Z., Dai, H.-N., Fu, X., Chen, B. (eds.)
BlockSys 2020. CCIS, vol. 1267, pp. 178–191. Springer, Singapore (2020). https://
doi.org/10.1007/978-981-15-9213-3 14

23. Zhuang, Y., Liu, Z., Qian, P., Liu, Q., Wang, X., He, Q.: Smart contract vulner-
ability detection using graph neural networks. In: Proceedings of the 2020 29th
International Joint Conference on Artificial Intelligence, pp. 3283–3290 (2020)


